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AlJstrac:t-A first order continuum theory with microstructure is developed for aligned short·fiber composites.
The fibrous material is modeled by a triply periodic array of rectangular parallelpiped elastic fibres which are
embedded in an elastic matrix. A proper reduction of the theory, by which the microstructure variables are
eliminated. yields the effective moduli of the short·fiber composite. The overall elastic constants of the three
specific situations of long·fiber composites. particulate composites and periodically bilaminated media, are
obtained as special cases. The reliability of the predicted effective moduli is verified by numerous comparisons
with available experimental results in various cases.

INTRODUCTION

The prediction of the elastic effective moduli of fiber-reinforced composite materials, in the
case when the fibers are continuous, is well established,. see Christensen[l] and references cited
there. When short-fiber composites are considered, the problem of the determination of the
overall behavior becomes more complicated, due to the additional effect of the finiteness of the
fibers, as a result of which the moduli depend this time, in particular, on the fibers' aspect ratio
(ratio of length to width).

Under dilute conditions, when the concentration of the fibers in the matrix is low enough, it
is possible to neglect the interaction effects between the fibers. Consequently, one can deal with
a single inclusion (ellipsoid) imbedded in the Il"atrix, and Russel[2] derived the effective moduli
under the additional assumption of a slender inclusion. Similarly, Phan-Thien [3] applied
recently the slender-body approximation to a dilute suspension of fibers, in order to obtain the
effective moduli of short-fiber composites with arbitrary distribution of fibers.

The self-consistent method has been applied recently in [4] and [5] for the prediction of the
effective constants of short-fiber composites. In the framework of this theory, the elastic field
of the dense fibers is approximated by the field of an isolated ellipsoidal inclusion. The single
inclusion is assumed to be imbedded in a continuous homogeneous medium. The inclusion has
the elastic properties of the short fiber, while the surrounding material possesses the effective
properties of the composite. The solution of the single elastic inclusion problem is used for the
determination of the overall constants of the composites. Thus, the method employs the same
elastic solution as in the dilute case. These assumptions give rise to some unrealistic descrip­
tions of the composite material by the self-consistent method, as it is discussed in [I].

A high order continuum theory with microstructure for unidirectional long-fiber viscoplastic
composites was developed by Aboudi[6]. The continuous fibers have square cross sections and
are embedded in the matrix in the form of a square array. An appropriate reduction of the
theory by which the microstructure variables are eliminated, yields the effective behavior of the
composite. For elastic composites it turns out that the values of the four effective constants for
the axial Young's modulus and Poisson's ratio, the plane strain bulk modulus and the axial
shear modulus given by this theory, are in excellent agreement with the values computed from
the exact expressions of the corresponding moduli predicted by the composite cylinders
model [7, 1]. Whereas it is not possible to derive from the composite cylinders model an exact
expression for the effective transverse Young's modulus and only bounds are available, the
continuum theory of[6] determines directly this constant as well. The veracity of this constant
is checked by comparisons with experimental results exhibiting good agreement.

In this paper, the approach of Ref. [6] is generalized to model short-fiber composites.
However, since the overall behavior 01 the composite is sort, the development is confined here
to a first order theory, which is reduced by the elimination of the microstructure variables to
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yield the required effective constants. The short fibers are modeled by rectangular parallele­
pipeds, which are imbedded in the matrix in the form of a triply periodic array. The effective
Young's moduli and Poisson's ratios of the composite are determined from the solution of a
system of algebraic equations.

In the special case of long square parallelpipeds, the effective constants of long-fiber
composites of [6] are recovered. Furthermore, in the limiting situation, when two sides of the
rectangular parallelpiped are very long with respect to the third one, the case of a periodically
bilaminated medium is obtained. It is well known that the overall behavior of a bilaminated
composite can be represented by a transversely isotropic material whose five effective
constants are given by exact expressions (see Postma[8]). It turns out that the effective
constants provided by the present theory apparently coincide with those computed from the
exact expressions of Postma.

When the aspect ratio of the fibers is equal to one, the special case of a particulate
composite is obtained, in which the particles are represented by cubic inclusions and the
effective constants can be readily computed. If, on the other hand, the particulate medium is
modeled by the composite spheres model[9, I], it is known that only the effective bulk modulus
can be obtained in an exact form. Here it turns out that the values of the bulk modulus
predicted by the present model are in excellent agreement with those given by the closed form
expression of the composite spheres model.

The reliability of the effective moduli given by the proposed model is checked by several
comparisons with available experimental data for particulate and short-fiber composites, which
indicate satisfactory agreements. Comparisons with the results based on the self-consistent
method are given and discussed.

GEOMETRY AND DISPLACEMENT EXPANSION

Consider a compsoite material which consists of an elastic matrix reinforced by uni­
directional elastic fibers of finite length. It is assumed that the fibers have the form of a
rectangular parallelpiped whose volume is dlhll l and are imbedded in the matrix in a triply
periodic array in the XI> X2 and X3 directions (see Fig. la). Let d2, h2 and lz represent the spacing
of the fibers within the matrix in the XI> X2 and X3 directions, respectively.

Due to the assumed regular array, we consider a representative cell of dimensions (d l +d2),

(hI + h2), (/1 +12), as shown in Fig. 1(b). The cell is divided into eight subcellsa,{3; 'Y = I, 2 and
eight local systems of coordinates (i\a), i<[J), i~'Y» are introduced whose origins are located at
the center of each subcell. Their positions are denoted by x\a>, x<[J>' x~y).t

A high order continuum theory can be developed for the modeling of the composite, which
is based on the expansion of the displacement vector in each subeell, in terms of the distances
in the XI> X2 and X3 directions from its center. This expansion can be expressed in terms of the
Legendre polynomials permitting the modeling of increasing complex deformation patterns
within the subcell. This paper is confined to the development of a first order theory which is
sufficient for the extraction of the average behavior of the composite by a proper reduction.

For a first order theory, the displacement components at any point within the subcell can be
expressed as

(1)

where w\atly)(x\a), x<[J), x~y), t) are the displacement components at the center point of the
subcen, and 4>latly}(x\a), x<[J>' x~'Y), t), xlatll'}(x\a), x<[J>' x~y}, t) and "'lally)(x\a>, x<[J>' x~Y),t) characterize
the linear dependence of the displacements on the local coordinates within the subcell,· and t is
the time.

. fi ld' h .... f (allY) A. (ally}According to (1) the dIsplacement e m t e composIte is given 10 terms 0 Wi' 'l'i ,

X\ally ) and "'1"tll') and these are defined only at the discrete points Xl = x\"), X2 = x<[J>' X3 = x~y).

By a smoothing operation the discrete nature of the composite can be eliminated and a

tHere and in the sequel the subscripts or superscripts Il, (3. 'Y will indicate that quantities belong to one of the subcells.
Repeated a or f3 or 'I do not imply summation.
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Fig. l. (a) Ashort·fiber composite in which the rectangular paralle/piped fibers are arranged in a triply periodic array.
. (b) A representative cell.

homogeneous continuum model is obtained. This is achieved by considering wIQ,ll~I, «pIQ,ll')'), xlaP')')

and l/I1Q,ll')'1 as continuous functions of XI> X2, X3 whose values at XI = X\"l, X2 = Xlfl, X3 = X~"'l coincide
with the actual values at the centers of the subcells. This transition is indicated by writing (XIt X2, X3,

t) instead of (x\"l, xf.!), X~...l, t) for the arguments of the field variables. Consequently, both types of
materials are assumed to exist simultaneously at every point of the continuum model.

The components of the small strain tensor are given by

(2)

where the differentiations are with respect to the local coordinates, i.e. 01 = oloi\"'l, 02 = oloif.!l
and 03 = oloi~"l'l.
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6% 1. ABOUDI

INTERFACE CONTINUITY CONDITIONS

Along the interfaces of the subcells the displacements and normal and shear stresses are
continuous, i.e.

(3)

(4)

(5)

(6)

(7)

(8)

where O"fj/l'Y)(i, j :=: 1,2, 3) are the stress components within the subcell; and theplus-and-minus
signs in eqns (3) and (6) denote the two different equations obtained, depending on whether the
interface follows the subcell (11'')') or (21'')'). Similarly, the plus-and-minussigns ineqns (4), (7)
and (5), (8) denote the two different situations depending on whether the corresponding
interface follows the subcell (at')') or (a2')') and (al'l) or (aI'2), respectively.

Generalizing the procedure given in [6] for infinitely long fibers, it can be shown that the
displacement continuity conditions (3)--(5) yield in the present case, when the fibers have a finite
length, the following relations (in the framework of the first order theory), compare Ref. [6,
eqns (54)]:

WP1l):=: W\112):=: W\121):=: W\l22) == W\211) == W\212)

== W\22l) == W\222) == Wi(Xh X2, X3, 0,

d A. (l/3y) +d A. (2/3'1') == (d +d ) J!..- W,
1'1' I 2'1', I 2 i!x1 '

h X(a 1'1') +h X(a2 y) (h + h ) J!..- W·
1 , 2 , 1 2 OX2 '

1 .1'\a/31} +1 .1.\a/32) == (I +f\ J!..- W
1'1', 2'1" 1 2J OX3 ,.

(9)

(10)

Since the discrete nature of the medium is eliminated by the smoothing procedure, it is assumed
that relations (10) hold simultaneously throughout the medium.

The transition from the discrete to the homogentous continuum model replaceS the stress
continuity conditions (6)-(8) by

(I/3'Y)(X x· O) == + dl x·(/3) x·(y) t) == a(2/3Y)(x j(2):=: +: d2 x·(/3) x· h ) t)
0" II \ k, I - 2' 2 , 3, I, k, I 2' 2 , 3,

a ('!'IY)(x X·(a) X·(l):=: + hI j(Y) t) == n,('!'2Y)(X ira) i(2):=: +: h2 x·(y) t)
21 hI, 2 - 2 ~ 3 , v 2, hI, 2 2' 3,

....('!'IJH(x x·(a) X·(Il) X·(I) == +!! t) = a(a/l2)(x X·(a) x·(Il) X·(2):=: +:!l t) (11)
v 3, k, I , 2 ,3 - 2' 31 b I , 2 ,3 2'
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where Xk stands for Xh X2, X3' Equations (10) and (II) are 72 equations for the continuity of
displacements and stresses, respectively.

EQUATIONS OF MOTION

The equations of motion of the homogeneous continuum model are derived from the
dynamic equations of motion in the subcell regions. In the absence of body forces, the latter are
given by

(2)

where Pa/3y is the mass density of the material in the subcell, dots represent differentiation with
respect to time, and the spatial differentiations are with respect to the local coordinates which
are located at the centers of the subcells.

The equations of motion for the first order continuum theory are obtained by multiplying
(i2) by (x~a~p(i¥,~q(i~Y~'; p, q, r = 0, 1; and integrating both sides with respect to i~a), x¥') and
x~Y), This yields after integrations by parts and using (I) the following set of equations
governing Wj(Xkt t), 4>\a/3Y)(Xkt t), x\a/3Y)(Xh t) and tflla/3Y)(Xb t):

I (alJy) + j(a/3y) +K(a/3y) - ..
Ij(O,O,O) 2j(O,O,O) 3j(O,O.O) - Pa/3yWj, (13)

where 8ij is the Kronecker delta, q = r = 0 when p = 1, p = r = 0 when q = 1, and p = q = 0
when r = 1. In (14)

(15)

(16)

(17)

with

(I8)

and

(9)

which is the average of the stress component in the subcell. In (l5)-{17) (T~tY)(± da/2),
(T~j/3Y)(± h~2) and (T~tY)(± lJ2) stand for the interfacial stresses (T~j/3Y)(Xb i~a) = ± da/2, i¥'), i~Y),
t), (T~rY)(Xb x~a), i¥'l =± h~2, i~Y), t) and (T~tY)(Xk' i~a), i¥'>' i~Y) =± IJ2, t), respectively,

It can be seen from the stress continuity conditions (II) that the following relations are
established

I (I/3y) - ( 1)P+l[(2IJy)
lj(p,q••) - - lj(p.q.,h

j(aly) _ ( 1)q+lj(a2y)
2j(p,q,,) - - 2j(p,q,,)'

K(a/31) - ( 1),+lK(a/32)
3j(p,q,,) - - 3j(p,q.')' (20)
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THE EFFECTIVE MODULI OF THE COMPOSITE

The overall behavior of the composite is determined by neglecting terms of the order of d,/,
h/, 1/ in (14) and eliminating the higher order displacement 4>;aIlY), x;all-y) and t/J;aIlY). The
solution of the resulting equations, in conjunction with the continuity conditions (10) and (20),
gives the effective moduli of the short-fiber composite when it is subjected to an appropriate
type of loading. It should be noted that the omission of the second order terms enables the
elimination of these microstructure variables, thus yielding relations between average quantities
only (as shown in the sequel).

In performing this derivation it is assumed that the matrix and fibers are linearly isotropic
elastic materials so that the stress-strain relations are given by the Hooke's law:

(J' !~IlY) =' E(aIlY)~.. +211 E!~IlY)
I} l\a{3y kk O'l rallY IJ i, j, k = 1,2,3 (21)

where Aall-y and j.La{3y are the Lame constants of the material in the subcell (0:131'). SUbstituting
(2) in (21), the average stress are readily obtained from (19) in the form

S(latlly) E A,. (ally) +, [x(a{3Y) + .,,(aIlY)]
ally'/' I l\a{3y 2 'I' 3 ,

s~ar) Ea{3yX~a{3y) + AailY[ 4> \ailY ) + t/J~ailY)],

S~3IlY) Eallyt/J~ailY) +Aa{3y[4>\aily) + x~aljy)],

S (ally) = II [x (ally) + A,.(ally)]
\2 r-ally I '/'2 ,

S\'3IlY ) = /.La{3y[t/J\a IlY ) + 4>~aIlY)],

S~'3IlY) = /.LaIlAl/J~aIlY) +X~aIlY)J,

with E ally = Aaljy +2j.Lally·

Neglecting second order terms in d,}, h/ and 1/ in (14) yields

r(ailY) - s(a{3Y)
tjO.O.O) - Ij ,

J(aily) -s(ally)
2j(O,t.O) - 2j ,

K (ally) - s(a{3y) • - 1 2 3
3j(0.0.0 - 3j , 1 - , , .

(22)

(23)

Equations (10), (20) and (23), in conjunction with the loading conditions, suffice for the
determination of the effective axial (xI-directions) Young's modulus and Poisson's ratio, and the
effective transverse (X2 and x3-directions) Young's moduli and Poisson's ratios. This is illus­
trated in the sequel for oriented fibers (in the xI-direction) of square cross section (hi = 1\)
imbedded regularly in the matrix such that h2 == h. In addition, the spacing of the fibers in the
axial direction XI is taken to be equal to the spacing in the transverse directions, i.e. d2 = h2 = 12•

Let s denote the fiber aspect ratio: s = dl/h t• Accordingly, the volume fraction of the fibersis
given by

from which hdh2 can be determined for given values of VI and s.
The average stresses in the composite are given by

- I ~ V s(all-y)
(Tij - V ",,_allY ij

a./l.y-I

(24)

(25)

where V = (d1 + d2)(h l + h2)(l1 +'2) being the total volume of the representative cell. Similarly,
the average strain has the form

_ 1 2'" V (a/ly)
(Tij = - "" a/lyE ij

Va./l. y =!

(26)
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which is also compatible with the expression
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(27)

as can be verified from (1), (2) and (10).
Suppose that the composite is subjected to a uniaxial stress in the xI-direction, such that

UI\ #:- 0, and all other Uii are zero. In this situation the following 26 nontrivial algebraic equations
in the 26 unknowns <I>\a/3'Y), x~a/3'Y>, l/J~a/3'Y>, (a/aX2)W2 and (a/aX3)W3 are obtained from (20), (23) and
(10):

spr) = S\~/3'Y),

S~21'Y) = S~22'Y>,

S~3/31) = S~3/32),

d ..1.(1/3"1) +d ..1.(2/3"1) = (d +d) -i.. W
I'l'l 2'1'1 I 2 aXI h

h X
(al'Y) +h X(a2'Y) = (h +h\ -i.. W

1 2 2 2 I V aX2 2,

1_,.(a/31) +1 .,.(0/32) = (I +l' -.i... W
1'1'3 2'1'3 I V OX3 3,

and the uniaxial loading conditions

U22 == 0, U33 == 0.

The effective axial Young's modulus and Poisson's ratio are defined by

(28)

(29)

(30)

(3l)

and they are determined from the solution of (28) and (29), in conjunction with (25H26).
When the composite is subjected to a uniaxial stress in the xrdirection, such that U22 ¥ 0,

and all other Uij are zero, there are 26 nontrivial equations in the 26 unknowns <I>\a/3'Y), X~0/3'Y), l/J~a/3'Y),

(a/axI)w\ and (a/aX3)W3, which are given by (28) and

(32)

Here we define the effective transverse Young's modulus and Poisson's ratio of the composite
in the form

(33)

(34)

which are computed from the solution of (28) and (32).
The effective plane strain bulk modulus, k, which is not independent of the previous overall

constants, can be determined directly from the solution of (28) by selecting ill == 0, i22 = i 33 ==
Eo, yielding

(35)

The effective axial shear modulus is determined by applying 0'12 ¥ °(or 0'13 ¥ 0), and all
other O'ii = 0. It turns out that the resulting equations are sufficient for the determination of this
modulus only in the limiting case of long fibers (for fibers of finite length the number of
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unknowns exceeds by 2 the number of independent equations). The results of the self­
consistent scheme method reported in [4,5] however, indicate that the effective axial shear
modulus is very weakly dependent on the aspect ratio.

APPLICATIONS

In the following, numerous applications and assessments of the proposed theory are given
and several comparisons with experiments and other approaches are presented and discussed.

(1) Long-fiber composites
As a first necessary check of the results provided by the present model, we consider

long-fiber composites (s ~ 00; hi == II)' In this limiting case, the model reduces to that presented
previously in [6], for continuous fibers of square cross sections. It turns out that the resulting
effective constants EA, VA, k and GA where GA is the effective axial shear modulus given by[6]

(36)

with 1J.1> 1J.2 being the regidity of the fiber and matrix, respectively, are in excellent agreement
with those provided by the composite cylinders model[7, 1]. The latter model effectively
represents the long-fiber composite as a transversely isotropic material whose four constants
EA, VA, k and GA are given by closed form expressions. Extensive discussions of the effective
moduli predicted by the composite cylinders model can be found in [1] and [7].

For the effective transverse Young's modulus ET, upper and lower bounds only can be
obtained from the composite cylinders model, whereas in the present model it can be directly
determined from (33). In Fig. 2(a), the transverse Young's modulus, ET, for a glass(l)/epoxy(2)
long-fiber composite provided by the present model is compared with experimentaldata taken
from [10]. The material constants are Ell E2== 21.19, VI == 0.22 and V2 == 0.35, where EI> E2are the
Young's moduli of the constituents and VI> V2 are their Poisson's ratios. It is well seen that the
agreement between the theoretical and measured results is satisfactory.

Similarly, Ey is given in Fig. 2(b) for boron (1)/epoxy(2) long-fiber unidirectional composite
where EdE2== 100, VI == 0.2 and V2 == 0.35. Here too the agreement between the prediction of the
present theory and the measured data (reported in [7]) is clearly noticed.

(2) Bilaminated composites
In the limit, when two sides of the rectangular parallelpiped (which represent the finite

fiber) are very long with respect to the third, e.g. h I~ 00, II ~ 00 and dI is kept finite (see Fig. la),
the case of a periodically bilaminated medium is obtained, in which d l and d2 stand for the
widths of the layers. The overall behavior of the laminated medium can be represented by a
transversely isotropic material (XI is the axis of symmetry) whose effective constants have
closed form expressions which were derived by Postma[8] and summarized in [I]. The values of
the effective moduli, provided by the present theory in this limiting situation, are in excellent
agreement (they apparently coincide) with those given by the exact expressions of Postma, thus
indicating the reliability of the model in the present situation as well.

(3) Particulate composites
When the aspect ratio of the fibers is one (s == 1) the special case of a particulate composite

is obtained, for which the filler concentration is given by eqn (24). For this value of s, the
effective axial Young's modulus and Poisson's ratio, given by (30) and (31), coincide with the
effective transverse Young's modulus and Poisson's ratio given by (33) and (34).

In Fig. 3(a) the effective Young's modulus and Poisson's ratio against VI are shown for a
glass(1)/polyester(2) composite, for which the ratio of the Young's moduli of the constituents is
EdE2== 40.8 and their Poisson's ratios are VI == 0.21, V2 == 0.45. The theoretical curves are
compared with the experimental results of Richard [11] and it is well seen that a good agreement

exists.
When the particulate composite is described by the composite spheres model[9, 1], by which
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Fig. 2. (a) Comparison between the theoretical (-) and measured effective transverse Young's modulus
for a long-fiber composite made of glass (I)/epoxy (2l for which E,/E2 =21.19, VI =0.22 and V2 =0.35. The
experimental data are taken from [101. (b) Same as (al, but for boron (I)/epoxy(2) unidirectional composite

where EdE2 = 100, VI =0.2 and V2 =0.35. The experimental data are taken from[7].

the composite is represented by an equivalent isotropic material, it is known that only the
resulting effective bulk modulus can be expressed in an exact form. It is given by

(37)

where the subscripts 1,2 stand for the filler and matrix, respectively.
For the present model, the effective bulle modulus of the particulare medium can be determined

directly from (28) by substituting Ell =En =E33 =Eo yielding:

(38)
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Fig. 3. (a) Comparison between the theoretical (-) and measured effective Young's modulus and
Poisson's ratio for a particulate composite made of glass (O/polyester (2) for which E"E2 =4O.S, VI =0.21
and V2 = 0.45. The experimental data are taken from [II). (b) Aplot of the effective bulk modulus vs VI for

the glass/polyester particulate composite. The corresponding curve based on (37) coincides.

In Fig. 3(b), the effective bulk modulus for the glass(l)/polyester(2) composite, computed from
(38), vs VI is shown, It turns out that g, given by the composite spheres model (37), is in excellent
agreement with the prediction of the present model (38) (up to the scale of the plot they are
indistin&uishable).

It should be noted that the relation g = £/(3 - 6i1) is satisfied as can be expected.
As further checks for the veracity of predictions of the present theory for particulate

composites, the effective Young's modulus is shown in Fig. 4(a) for sand(l)/epoxy(2) com­
posite, for which E I/E2 = 35.7, VI = 0.25, V2 = 0.4, together with the experimental results of
Ref. (12), measured in compression and tension tests. The satisfactory agreement between the
theoretical curve and experimental data is well observed.

In Fig. 4(b), theoretical and measured results for the effective Young's modulus of a porous
epoxy matrix are shown, vs VI (which expresses in this case the amount of porosity). The
present theory in this situation appears to predict higher values, especially for VI > 50%. It is
interesting to mention, however, that all the theoretical curves in Ref. [12, Fig. 3), based on
various approaches, pass above the experimental data in this range. In [l3J, a model fora
porous medium in the form of a periodic cubical structure of spherical voids (allowing a
maximum porosity of ,"/6 "'" 0.52) was recently developed, and numerical results are given for
VI <40%.
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Fig. 4. (a) Comparison between the theoretical (-) and measured effective Young's modulus for a
particulate composite made of sand (l)/epoxy (2) for which E1/E2 =35.7, II) =0.25 and 112 '"' 0.4. The
experimental data are taken from [l2). (b) Comparison between the theoretical (-) and measured
effective Young's modulus of a porous epoxy vs the amount of porosity. The experimental data are taken

from [l2).

(4) Short-jiber composites
When the fibers aspect ratio is greater than one, a composite material with fibers of finite

length, aligned in the xt-direction, is obtained.
In Fig. 5(a), we present the graph of the effective axial Young's modulus, computed from

eqn (30), vs the aspect ratio for a nylon(l)/rubber(2) composite for which the ratio of the
Young's moduli of the constituents is EllE,. =973 and their Poisson's ratios are: VI =0.4, V2 =0.5.
The volume concentration of the nylon is VI = 35%. In the same figure the experimental results of
Kardos et al. [14] are included. It is clear that the comparison between the theoretical and measured
values exhibits a good correspondence, which support the reliability of the theory. In[14], the
experimental data are compared with the prediction of the Halpin-Tsai semi-empirical equation
which turns out to coincide (in the given scale of the plot) with the theoretical curve of Fig. 5(a) for
s 2:4.

As another check of the validity of the present model, we show in Fig. 5(b) the measured
values (taken from Ref. [14]) of the effective Young's modulus of the nylon/rubber composite
when the short fibers are randomly oriented in the rubber matrix.

On the other hand, the theoretical values of the effective Young's modulus of planer and
three-dimensionally random distribution of fibers can be determined, by using the method of
Christensen and Waals[15, 1], directly from the effective moduli of the corresponding oriented
short-fiber composite. The latter are given according to the present theory by (30), (31), (33),
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Fig, 5. (a) Comparison between the theoretical (-) and measured effective axial Young's modulus for an
aligned-fiber composite made of nyton (I)/rubber (2) for which EtlE2 = 973, "1 = 0.4, "2 = 0.5 and [", = 0.35.
The experimental data are taken from(14). (b) Same as (a) but for randomly oriented fibers of planer (2-d)

and three-dimensional (3-d) distributions,

(34) and (36). It should be noted that the expression for the effective axial shear modulus of
oriented long-fiber composites (eqn 36) is used here since GA is very weakly sensitive to the
variation in the aspect ratio for a constant value of fibers concentration (see [4, 5]). The resulting
computations of the effective Young's modulus are shown in Fig. 5(b) against the asp¢ct ratio in
the two cases of complete (3-dimensional) and planar (2-dimensional) random distribution of
short fibers. It is seen that the experimental results fit very well with the theoretical curve of
planer random distribution.

It is also possible to perform comparisons with the measured values, reported in [17], of the
effective axial Young's modulus, EA, of steel (l)/epoxy (2) and copper (l)/epoxy (2) uni­
directional short-fiber composites The material constants of the phases of the two composites
are E"E2 =76, VI =0.3, V2 = 0.35 and E"E2 = 42, VI =0.3, V2 =0.35, respectively. The theoreti­
cal results (computed from eqn 30) and the experimental values are shown in Fig. 6. The curves
shown in [17] which are based on semi-empirical equations are much higher than the measured
values so that they are not useful.

The self-consistent scheme (s.c.s.) has been applied in [4] and [5) for the prediction of the
effective behavior of aligned short-fiber composites. In the framework of tbis theory a single
ellipsoidal inclusion of a given aspect ratio is assumed to be imbedded in a continuous
homogeneous medium. The inclusion has the elastic properties of the short fiber, while the
surrounding material has the effective properties of the composite. The solution of the single
elastic inclusion problem is used for the determination of the effective constants of the
composite. These assumptions give rise to some unrealistic descriptions of the composite, as it
is discussed in [1).

In Fig. 7 we compare the results for the effective axial and transverse Young's modulus
based on the present theory with the s.c.s. results of Chou et al.[5], for several valuesof·the
aspect ratio. The ratio of the Young's moduli of the composite's constituents is EllE2 = 20, and
their Poisson's ratios are VI = 0.3, V2 = 0.35. It is seen that the curves based on the present
model either partially coincide or are below the curves computed by the S.c.S. This feature
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Fig. 6. (a) Comparison between the theoretical (--) and measured effective axial Young's modulus for
two values of the aspect ratio, of an aligned short-fiber composite made of steel (l)/epoxy (2) for which
E1/E2 =76, PI =OJ and "2 =OJ5. The experimental data are taken from (17). (b) Same as (a) but for copper

(l)/epoxy (2) composite for which E./E2 =42, VI =OJ and 1'2 =OJ5.

appears to be consistent with the observation that the values of the effective Young's modulus
of a particulate composite (s = 1) predicted by the s.c.s. are higher than the experimental data
for VI> 30%, see [11, Fig. 2], whereas the prediction of the present model is in a good
agreement (see Fig. 3a). In addition, the relatively weak dependence of the effective transverse
Young's modulus on the aspect ratio should be noted (this dependence is completely neglected
in the Halpin-Tsai equations).

In addition to the theoretical s.c.s. results of Laws and McLaughlin[4], some experimental
data for the effective axial Young's modulus of glass(l)/nylon(2) and glass(l)/polypropylene(2)
short-fiber composites are reported. In Table 1 these experimental results, assuming perfect
alignment of the fibers, are compared with the prediction of the present theory (eqn 30), as well
as the results of the s.c.s. of[4]. Also included in the Table are the values given by the
Halpin-Tsai equation[14] which is based on a semi-empirical approach. It is clearly observed
that the experimental data are closer to the values predicted by the present theory, and the
s.c.s. results are pronouncely above them.

Table I. Results for the effective axial Young's modulus EA of short-fiber composites

c.....osite

glass (1)/nylon(2)

E/12 • 23,

VI • 0.2, v2 • 0.4

EA/E2
reinforcement ratio aspect ratio experiment present theory s.c.s. Halpin-

VI s Tsd

17.7% 18.6 3.1 2.8 4.34 3.63

glass (1) Ipolypropylene (2)

E/E2 • 47.36,

VI • 0.2, v2 • 0.4

10.9% 43.7 3.55 2.86 5.6 4.44
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